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A COUNTEREXAMPLE IN STOCHASTIC OPTIMUM
CONTROL*

H. S. WITSENHAUSEN{

Abstract. It is sometimes conjectured that nothing is to be gained by using non-
linear controllers when the objective is to minimize the expectation of a quadratic
criterion for a linear system subject to Gaussian noise and with unconstrained control
variables.

In fact, this statement has only been established for the case where all control
variables are generated by a single station which has perfect memory.

Without this qualification the conjecture is false.

1. Introduction. In a stochastic control problem control actions have to
be taken at various instants in time as functions of the data then avail-
able. One seeks the functions for which the expected value of the cost,
under given noise distributions, is minimized. It is usually assumed that
all actions to be taken at a given time are based on the same data and
that any data available at time ¢ will still be available at any later time
¢ > t. This situation is the classical information pattern.

Considering in particular unconstrained control of linear systems with
Gaussian noise and quadratic eriteria, it is well known that the search
for an optimum can safely be confined to the class of affine (linear plus
constant) functions [1]. This is the case for both discrete and continuous
time systems, with classical information pattern.

In this paper it is shown that the class of affine functions is not always
adequate (complete, in decision theory parlance) when the information pat-
tern is not classical.

A counterexample is presented for which it is established that an optimal
design exists and that no affine design is optimal. There does not appear
to exist any counterexample involving fewer variables than the one pre-
sented here.

The practical importance of nonclassical information patterns is dis-
cussed.

2. Problem description.

Original Statement. Let x, and v be independent random variables with
finite second moments. Consider the following 2-stage stochastic control
problem. (All variables are real scalars.)

State equations. @ = Zo + U,
Xy = X1 — Usz.

* Received by the editors August 7, 1967.
1 Bell Telephone Laboratories, Incorporated, Murray Hill, New Jersey 07971.

131



132 H. 8. WITSENHAUSEN

Output equations. Yo = Zo,

Y1 =21+ 0.
Cost function. K (wm)® + (), & > 0.
Admissible conlrollers. ur = v1(%),

Uy = v2(Y1),

where (v1, 7v2) is any pair of Borel functions. The set of such pairs is
designated by T.

Objective. For any choice of (71, v2) the variables w; and x» become
random variables, and since the cost function is nonnegative it has an
expectation that is possibly infinite. The problem is to minimize over T
the expression E{k’(u1)* + (22)’}. The information pattern is nonclassical
because the value of ¥, is known at the first control stage but not at the
second.

It will be shown that for xy and v Gaussian and suitable parameter
values the best affine controller is not optimal over T.

Restatement. Denoting xo by z, v» by ¢ and letting f be defined by
f(z) = © 4+ v(zx), the problem amounts to minimizing, over the set I' of
all pairs of Borel functions (f, ¢g), the expression

(1) I, 9) = BlE(xz — ()" + (f(2) — g(f(x) + v))7,
where &> > 0. Without loss of generality one may assume
(2) E{z} = E{v} =0, E{’} = 1.

This reduction amounts to ordinate shifts of f and g, abscissa shift of
g and rescaling. The case E{v”} = 0 is trivial. Problem =(%’, F') is the prob-
lem of minimizing (1) with » Gaussian subject to (2) and z having the
distribution function F subject to (2) and 0 < E{z’} = ¢° < . Problem
w(k’, ¢”) is the special case of problem x(k*, F') with F the Gaussian dis-
tribution with zero mean and variance o’.

3. Existence of an optimum for problem =(k’, F).

Lemma 1. (a) J* = inf {J(f, ¢) |(f, 9) € T} satisfies 0 < J*
< min (1, k%°).

(b) If (f, g) €T, then there exists (fi, g1) € T such that E{fi(z)} = 0,
E{(z — fi(2))"} £, J(fi, 1) £ J(f, 9) and E{fi’(z)} < 40"

Proof. (a) For f = 0, ¢ = 0 one has J(f, g) = K'E{z"} = k%", while
for f(z) = x, g(y) = y one has J(f, ¢) = E{o’} = 1.

(b) If E{(x — f(x))"} > o" so that J(f, g) = K'E{(x — f(2))*} > Ko,
then fi = g; = 0 satisfies all requirements. If E{(z — f(x))’} < o°, then
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E{f’(z)} = 46", so that m = E{f(x)} exists. Let fy(z) = f(z) — m, gi(y)
= g(y + m) — m. Then E{fi(2)} = 0, B{(z — fi(z))"} = E{(z — f(x))"}
— m’ = o, hence B{fy"(2)} < 40”and J(fi,91) = J(f,9) — k'm* = J(f, 9).

Hence one need only consider pairs (f, g) for which f(z) has zero mean
and variance not exceeding 4¢”. For such f we now select g = ¢;* to minimize

J(f, g) for fixed f.
With o(z) = (2re”) ™' define

Diy) = [ oty = f()) aF(a),

Niy) = [ @ty — f(2)) dF(a),

gf*<y) = N/(y)/Ds(y),
I (f) = I, 9/).

First we recall a well-known fact.
Lemma 2. Let p be a measure and h a measurable function. Consider the
integral

+o0
H(s) = [ ols = OB(0) (),

Then the set of real values of s for which the integral is finite is convex and H
18 analytic on the interior of this set.

Proof. Since o(s — t) = +/2ro(s)e”’e(t), one can interpret I as
H(s) = v/rels) [ ¢o(0n(2) du).

The claim then follows from the properties of convergence strips of two-
sided Laplace transforms.

LemMa 3. Assume E{f*(x)} < . Then

(a) Ny, Dy, g;* are analytic with D; > 0;

(b) Dy is a density of the random variable y = f(x) + v;

(e) gs°(v) = E{f(2) |y} as.;

(d) Jz*(f) = min {J(f, ¢) | g Borel};

(e) dgf (y)/dy = var {f(x) Iy} 2 0

(f) J2*() — KB{(z — f(2))}) = Elvar {f(z) |y}}
= E{f'(x)} — Blgs™(y))
=1 - 1(Dy),

where

(D) = f( DM)) D)
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- [ 222 g D)

_4f( D,(y)

is the Fisher information of the random variable y;

(g) max (0,1 — E{f*(x)}) = I(Dy) £ 1, and for E{(z — f(z))"} <o
one has Jo*(f) £ Ko* 4+ min (1, 46°).

Proof. (a) For each y the integrands ¢(y — 2) and ze(y — z), with
z = f(x), are bounded, hence the integrals defining N; and D; exist for
all y. By Lemma 2, N; and D; are analytic. Since ¢ is strictly positive, so
is Dy, hence g;* is analytic.

(b) The joint distribution of y and z is defined by

o(y — f(z)) dy dF (x)

because the measurable transformation (‘Z) > (;) with y = f(z) + v

is measure preserving by Cavalieri’s principle (though a Jacobian does not

exist for general f). Hence the marginal distribution of y has density D;.
(¢) Since f(x) has finite second moment, its conditional expectation

exists. With the joint distribution of z and v as in (b), (¢) is immediate.
(d) This states the quadratic minimization property of expectations.
(e) and (f). These follow by simple manipulations. Note that

Ni(y) = yD;(y) + (—]%Df(y);

hence,
@) =y + Llog D, (y).
dy

(g) This follows as in Lemma 1.
The problem is thus reduced to the minimization of

Jo*(f) = K'E{(z — f(£))"} — I(Dy) + 1

over all Borel functions (or only those of zero mean and variance < 40°).

The designer is trying to find a compromise between (i) keeping the
cost of the first stage correction small, and (ii) making the Fisher informa-
tion of the observation available at the second stage large.

The difficulty is that J,* is not a convex functional.

Now for fo and g}, as in Lemma 3 we attempt to minimize J(f, g},)
over f for fixed g}, .

LevmMa 4. Let P be the distribution of a real random variable. Let oy be
the set of all points x for which both (— o, x] and [x, + =) have positive
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probability. Let ay be the set obtained by removing from the convex hull of the
support of P those boundary points which are not atoms. Let a3 be the inter-
section of all conver sets of probability one. Then oy = as = a3 = a(P),
the smallest convex set of probability one.

Proof. (i) ou D a : If = belongs to the interior of ay, both [z, ») and
(— =, z] have positive probability. If « is a boundary point of a,, then
it is an atom, hence belongs to oy .

(i) a2 D a3 : By construction a; is a convex set of probability one.

(ill) a3 D oy : If E is a convex set and x a point in e; but not in E,
then E is disjoint from one of the sets ( — «, z], [z, + «), and thus E has
probability less than one. Hence all convex sets of probability one con-
tain oy .

Note that in two (or more) dimensions the intersection of all convex
sets of probability one may have probability zero, because the boundary
of a nontrivial convex set is uncountable.

LemMa 5. For f and g;* as in Lemma 3 let P be the distribution of the random
variable f(x). Then the range of g;* is contained in a(P).
~ Proof. By contradiction suppose that for some y the set [g(y), =)
(or (— =, g(y)]) has probability zero under P. Then

9Dy) = Ny(y) = [ dF@)f(@Dely — f(2))
= fdP(z)Zso(y — 2)

= f dP(2)ze(y — 2)
(—®,9(¥))

< g(y) f(_w'ﬂm) dP(2)e(y — 2)

= g(y)Df(y)’

which is a contradiction.
E3 .
LemMma 6. For fo and g;, as in Lemma 3, fixed, one has

I gk = [ dP@FGE - f)) + K(f())],

where K s a nonnegative analytic function.
Proof. To shorten notation let ¢ = g}, and let P be the distribution of
the random variable fo(z). One has

16,0) = [ #8@ B = 1) + [ a0 1@ = o(5(2) + 0]
= [ aF@W( ~ 1)) + K ()]
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with
K() = [ dop(0)(z = gz + )"
= [ dyely — )G — 9"
Since the integrands are nonnegative, the above formulas are valid whether

the integrals are finite or not. Let 8 be the set {z| K(2) < «}. Because of
the inequalities

IA

g'(y) £ 28 + 2(z — 9(¥))’,
(2 — g(x))* £ 2 + 2¢°(y),

the set 8 coincides with the set of all 2 for which

fdyso(y — )¢ (y) < .

By Lemma 2 the set 8 is thus convex. By construction of g,
5 (fo) = J(fo, g) < o,

and therefore,
[ ar@K (@) = [ dPEKE) < .

Hence the set 8 has probability one under P. Since it is convex, 8 contains
a(P) defined in Lemma 4 and, by Lemma 5, a(P) contains the range of g.
Also by Lemma 3(e) g is monotone nondecreasing.

This author claims that 8 = (— «, + »); indeed otherwise by convexity
of B at least one of the inequalities —« < inf 8, sup 8 < e« holds. If
both hold, g is bounded which implies 8 = (—», 4 o). If inf 8 = — o,
sup B < «, then

[ ety = 6 @) = Vare() [ ayee(w)s')

converges for z < sup 8 by the assumption on 8 and a fortiori for z = sup 8.
But, for all 2,

f: dye(y — 2)g'(y) < »

because for y > 0, g is bounded, according to Lemmas 3(e) and 5, by

9(0) = g(y) = supB.
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HenceB = (— », 4+ «) and a symmetric argument applies for — o < inf 8,
sup B = oo,

In conclusion, f dye(y — 2)g°(y) is finite for all 2, and a fortiori

f dye(y — 2)g(y) is finite for all z. By Lemma 2, both these integrals are

analytic in 2. Therefore,

K(z) =4 — 2 f dye(y — 2)g(y) + fdw(y — 2)g(y)

is analytic.
Lemma 7. For E{(f(z) — 2)*} < ¢’ and g = g}, as in Lemma 3, there

exists a function f*, monotone nondecreasing on a(F), such that

(a) J(f*, g) = min {J(f, g) |f Borel},

(b) |f*(x)| < e(x) for x in a(F), where the real-valued function ¢ de-
pends only on F and &*, not on fo.

Proof. For each z the function

Va(2) = K(z — 2)" + K(2)

is nonnegative, continuous (by Lemma 6) and radially unbounded (be-
cause K = 0). Hence it attains its minimum on a nonempty compact
set. For each z define f*(x) as one of the minimizing values of z (e.g.,
the largest). Then for any z and z’,

Va(f*(2)) £ Va(f*(2))
and
Vo (F5(2')) £ Vo (f* (@),
Adding these inequalities gives
(z — &) (f (=) — ") z 0.
Hence the function f* is monotone nondecreasing and a fortiori Borel.
Va(f*(2)) £ Va(f(2))

for all z in «(F), which implies

[ @V @) = [ @)
or
J(f* 9) = I, 9),
so that f* is optimal for fixed g. In particular, J(f*, ¢) = J(f, ¢)

= J,*(fs) £ k%" + min (1, 4¢°), a constant independent of f;.



138 H. 8. WITSENHAUSEN

a 1/2 1/2
“Q«~%ﬂ9 f“’-QMa+w»)
Indeed, if f*(z) > (a/F([z, +»)))"* then

[aror @z [ aore

Hence E{f**(x)} < a, where a is a constant. Then for z € a(F),

a
I, + ) Jiomy T = 0
and similarly for the lower bound.

One also needs a special form of Helly’s selection theorem.

LemMma 8. Let S be a convex set of reals and f, a sequence of monotone non-
decreasing functions on S. Assume that, for all n and all z in S, |fu(2) |
= co(x) < oo. Then there exists a subsequence which converges pointwise
on S to a monotone nondecreasing function f.

Proof. Because at each x in S the numerical sequence f,(z) is bounded,
there exists a subsequence converging at that value of z. Given a countable
subset of S a subsequence converging on it can be formed by the diagonal
process. Let Sp be the set of rational points in 8. It is countable, hence we
may assume that f, is a subsequence converging on S;, reindexed. Then
lim sup f.() is a monotone nondecreasing function to which, by monotony,
the sequence f, converges at all points of continuity interior to S. Since the
points of discontinuity of a monotone function are countable and the
number of boundary points of S belonging to S is at most two, a second
application of the diagonal process yields a subsequence converging on S.

TaroreM 1. For any k* > 0 and any distribution F the problem w(k*, F)
has an optimal solution.

Proof. Let (£., 9.”) be a minimizing sequence in T, that is,

lim J(fn(O)’ gn(O)) = J* = inf {J(fs g) |f’ g Borel}.

Observe that J(f, g) depends only upon f through its restriction to a(F).
Henceforth we shall only consider functions f so restricted. Observe also
that when the construction of Lemma 1(b) is applied to a pair (f, g¢),
where f is monotone on a(F'), the resulting function f; is monotone on a(F).

For each value of n replace (£,, 3.”) by (£.°, ¢.) according to
Lemma 1(b). Then replace by (£.*, ¢.?) with ¢,® = g7, according to
Lemma 3. Then replace by (£., g.®), where f.® is optimal versus g,
and monotone as by Lemma 7. Then replace by (f., ¢.°) according to
Lemma 1(b) noting that f. is still monotone. Then replace by (f», g.),
where g, = g}",‘ according to Lemma 3.



STOCHASTIC OPTIMUM CONTROL 139

Then
J(fu, g0) = J2*(fn) s J(fa, gn<3)) = J(fn(Z); gn(2))
< J(fn(l) gn(2)) < J(fn(l) gn(l)) < J(fn(O) gn(O))

and therefore the sequence (f., ¢g.) is a fortiori a minimizing sequence,
that is,

lim Jy*(f.) = J*
By Lemmas 7 and 8 there exists a subsequence f,, converging to a limit
f pointwise on a(F). Relabel (fu., gu,) a8 (fu, ¢g»). By Fatou’s lemma,
E{f*(z)} £ liminf E{f,’(z)} < 4"

Let g = g;* = N;/D;. For each y the functions ¢(y — 2) and ze(y — 2)
are bounded functions of 2, and since ¢ is continuous,

o(y — fa(2)) = o(y — f(2)),
Ta(®)e(y — fa(x)) — f(@)e(y — f(x)),

pointwise in x, for all y.
By the bounded convergence theorem,

D) = [

a(F

) dF(z)e(y — fu(z)) = Di(y) > 0

for each y, and similarly,
Ny (y) — N,(y).

Hence ¢.(y) — ¢(y) pointwise.
For all z in «(F) and all ¥ the nonnegative expression

An(z,y) = (@ = fu(@))" + (fu(@) = 9u(¥))’le(y — ful))
converges to
Az, y) = (e — f(@)* + (f(x) — 9(¥))le(y — f(2)).

By Fatou’s lemma,

f dr (z) fdyA(x, y) = lim inff dF (z) fdyA,,(x, y)
a(F) n->0 a(F)

or
J(f,9) < liminf J(fu, gu) = J*.

n->

But, by definition, J* £ J(J, ¢), hence J* = J(f, g) and the pair , 9)
is optimal. (Define f as zero outside a(F').)
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Note that when a(F") has a (say upper) boundary point b not belong-
ing to a(F) (because b is not an atom), then the function c¢(x) of Lemma 7
approaches « as £ — b and, in consequence, the function f of Theorem 1
may approach « as 2 — b. Then a monotone real-valued extension of f
to (— w0, «) does not exist.

Taking the first variation of J,* gives, formally,

3 = [ ar()a,()af(2),
where
Gi(z) = 2K (f(z) — x)

+ [ dusty = 1) LD o — 007 + 2 (- ) - 2]

with
D/ (y) = %wa) = N/(y) — yDy(y).

Hence one has the following necessary condition.

Lumma 9. If fis optimal, then E{f(z)} = 0, E{f*(x)} < 44", and G;(x) = 0
F-almost surely, provided the formal differentiation holds at least in the sense
of Géteaux for of in Le[(— «, ), F].

This condition is of little use because there are in general many local
minima of J5*(f). Steepest descent in function space can be used to im-
prove a suboptimal solution but not, safely, to find an absolute optimum.

An alternative existence proof can be based on a generalization of
Theorem 378 of Hardy, Littlewood and Pélya [2]. All functions f which
give the same distribution to f(x) also give the same optimal cost 1 — I(Dy)
for the second stage. According to the theorem in question, among all
these “equimeasurable” functions, the monotone nondecreasing rearrange-
ment maximizes E{zf(x)}, hence minimizes E{(f(x) — =)°}. This es-
tablishes the existence of a minimizing sequence (f», g7,) with monotone f,, .

4. Optimization of n(k?, ¢%) over the affine class. For problem w(k?, ¢?%)
let

Jo* = inf {J(f, g) |4, g affine}.

Observe that the transformation of (f, ¢) into (fi, ¢1) in Lemma 1(b)
maps the class of affine pairs into itself. Hence one need only consider
E{f(x)} = 0or

f(z) = .
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For such f,

9" (y) = wy
with

_ o'\

Sl et

and
* 7% 2 2 2 X'
Ja (f) = J2a(>\) = kff(l - >\) +Tm5-

This expression being nonnegative, analytic and radially unbounded, op-
timal values of A exist and are stationary points of J5, .
Lemma 11. Optimal affine solutions exist and are of the form f(z) = \x,
9(y) = wpy, where
2

-9
b 14+ o2’

and t = ok is a real root of the equation

2

(-l +er+1i=o.
k2

Proof. Set dJ3.(\)/d\ = 0.
A great deal of insight is gained by interpreting graphically the con-
dition of Lemma 11. It may be written
b
T+ &y
Hence the stationary points are the abscissas of the points of intersection
of the curve

= (e — b).

¢

=Ty

with the line
s = k(o —1t).

The curve is odd and positive for ¢ > 0. Since o and k* are positive, all
solutions are positive. The curve has a maximum at ¢ = +/3/3 with value
34/3/16 and then decays asymptotically to zero with an inflection at
t = 1, where the value is $ and the slope —1.

Hence for ¥* = 1 and any o there is exactly one root which defines a
unique optimum,
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For k' < % and o sufficiently small there is a unique solution with ¢
small. For ¢ sufficiently large there is a unique solution with ¢ large. For
intermediate values of o there are 3 solutions corresponding to two local
minima, of J, separated by a local maximum. There is a value o, of o for
which the two local minima are equal, hence both optimal. For ¢ < o,
the lowest root is optimal; for ¢ > o, the largest root is optimal. Hence
for fixed k* < I the plot of the optimal \ versus ¢ has a jump at ¢, , though
J.* is continuous in ¢. At, and only at, the jump there are two optimal
solutions.

Lemma 12. For k* < 1 the critical value of o is o, = k', At this value the
twgc optimal sglutions are N = p = (1 = /1 — 4k?), both of which yield
Jo =1 —F.

Proof. Let k% = 1, k¥ < 1. Then the stationarity condition is
(¢t — o)(1 + ) 4 ¢t = 0 and can be factored into

(=t + 1)+t —0) =0.

2
Since the two roots t = (¢ &= +/¢2 — 4) give the same value 1 — %
to Ja, , they are the two local minima, and the real root of the cubic is the
intermediate local maximum. Hence k%° = 1 is the critical condition.

Note that for k’e” = 1, k* = 1, there is a triple root at the inflection point,
and for £’6® = 1, k* > 1, the only real root is that of the cubic and this is
then the optimum.

LemMmA 13. If a design is optemal in the affine class, it s optimal in the
class of all pairs of Borel functions (f, g) of which at least one is affine.

Proof. If either f or g is affine and fixed, the determination of an optimal
choice for the other function is a Gaussian-linear-quadratic single-stage
problem with classical information pattern, hence it is an affine function.

Clearly this lemma holds in far more general problems with “at least one”
replaced by “all but at most one.”

Lemma 14. If f(2) = A and g(y) = o\y/(1 + o'\?) s stationary (in
particular, optimal) over the affine class, then it satisfies the formal condi-
tions of Lemma 9.

Proof. With f(x) = Az, substitution yields

= of on — N
o) = 2B O~ 1) + )
which vanishes by the stationarity condition of Lemma 11.
Despite the facts stated in Lemmas 13 and 14, we shall find that J* < J,*
is possible.

5. Two-point symmetric distributions. Consider problem =(k?, F) for
F the two-point symmetric distribution assigning probability 2 tox = o > 0
and z = —o.
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Let a = f(o). For optimization we may assume by Lemma 1(b) that
f(—6) = —a and by Lemma 7 that ¢ = 0.
The first stage cost is thus k*(a — ¢)°. At the second stage,

Di(y) = 3(e(y — a) + ¢(y + a))
= 4/2r¢(a)e(y) cosh ay.
Hence,
ll))f;((g)) = — y -+ a tanh ay
and
g;*(y) = a tanh ay,
9 (y) = a® — d’ sech® ay,
Blg/®(y)} = @’ — Ma),
where
h(a) = v/2n ago(a)f :ﬁ(hyzu dy.
Thus,

T () = KE{(z — f(2))"} + E{f'(2)} — Elg/"(y)}
= k(a — o)* + h(a).

This is a radially unbounded analytic funection of @, and therefore attains
a minimum J* = V(o) at one or more optimal values of a. Any optimal
value must satisfy the transcendental equation

(o —a) = —3h'(a).

A plot of —%h/(¢) is similar in shape to the plot of ¢/(1 + ¢*)* which occurred
in the optimization of the Gaussian case over the affine class. Hence the
qualitative discussion of that case applies also in the present instance. The
possible appearance of two local minima has now a simple interpretation.
For small k* and appropriate ¢ one policy is to bring a close to zero by
means of f so that the second stage will have little work to do; another
policy is to make a larger than ¢, creating a vast gap between a and —a,
so that the second stage can almost infallibly separate these two values.

In summary one has the following lemma.

LemMa 15. When F s the two-point symmetric distribution with variance
o, then the design f(z) = (a/o)z, g(y) = a tanh ay is optimal for an appro-
priate constant a which gives the minimum in the formula

= Vi(s) = min **(a — o)* + R(a)].
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Note that the functions h(a), h'(a) and Vi(s) can be obtained by com-
puter programs with relative ease. Note also that, for the general problem
x(k*, F), whenever f(x) has a two-point symmetric distribution with the
values £a, then the minimum over g of E{(f(z) — g(f(x) + )% is h(a).

When a >> 1 (the variance of the noise v), the second stage cost should
be close to zero. More precisely one has the following lemma.

LEMMA 16. The function h(a) is bounded by /27 d’o(a) = a’¢ "'

Proof.

/‘;;fg(ﬁy%ady = fso(y) dy = 1.

6. Nonlinear design for the Gaussian case.

TuroreEM 2. There exist values of the parameters k and o for problem
(I, o) such that J*, the optimal cost, is less than J,*, the optimal cost
achievable in the class of affine designs.

Proof. Consider the design

f(x) = asgnz, g(y) = o tanhay.

For this choice f(x) has a two-point symmetric distribution and ¢ = g¢;*.

Then
J(f,9) = KE{(z — o sgn z)} + h(o),

where h is the function defined in §5.
The first term is readily evaluated to be

2%’ (1 — E{

For k%" = 1, by Lemma 16,

J(f,9) = 2(1 _4/75_) + ‘/5'11?2‘”@)-

As k — 0, the right-hand side approaches 2(1 — 1/2/r) = 0.404230878,
while by Lemma 12, J,* approaches 1.

Hence, for small K, J* < J(f, g) < J.".

The design of Theorem 2 is far from optimal. Lower values of J(f, g;*)
for K%* = 1, k” small, are obtained by starting with f a (2n + 1)-level
quantization and then improving this choice by the gradient method in
function space.

The optimum, which exists by Theorem 1, is not known.

Computer experimentation suggests that the functional J;* has a large
(possibly infinite) number of stationary points.

x

)4
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7. A lower bound for the Gaussian case. Since only suboptimal designs
for the Gaussian case were found in §6 and these give only upper bounds on
J*, it may be useful to have a loose but positive lower bound on J*.

Let £, u, v be independent random variables: £, v Gaussian of zero mean
and variances o°, 1; u taking the values +1 and —1 with probability 2.

Let J5* be the infimum, over all pairs (f, g) of Borel functions of two
variables, of the expression

Jo(f, 9) = E{E(ut — f(ug, £)° + (f(ug, £) — g(f(ug, £) + v, £)7.

Let = ué and y = f(uf, £) + v; then @ is a Gaussian random variable
independent of v and distributed like £.
Hence for any pair (fi, g1) of Borel functions of one variable, the choice

is a possible design, for which

I5(f,9) = J(fr, g0),

where J is the cost functional of problem (%’ ¢°). Hence J;* < J*. But
J3(f, g) = E{E{expression | }},

and for fixed £ the minimization of the conditional expectation is the prob-
lem of §5 with the variable ¢ of that section having the value ¢£&. Hence for
all pairs (f, g) the conditional expectation is, almost surely in £ bounded
from below by the function V(%) defined in Lemma 15. This establishes
the next theorem.

TaeoreEM 3. For problem =(k*, ¢*) one has

It = %fd&p(E/U)Vk(E)'

Since Vi can be obtained by computer, this bound can be evaluated for
any k and o.

Theorem 3 may be considered a special case of the following observation.
Suppose the expected cost, in a stochastic optimization problem with
nonnegative cost function, is considered as a function of the design v and
of the distribution ¥ of some of the noise variables. Suppose that the con-
ditional distribution of the other noise variables, given those described by
F, is fixed, for instance, because they are independent. Let K(v, F) be
this function, with values in [0, + «]. Then for each v, K is a linear func-
tion of F on the set on which it is finite and is + « elsewhere. Therefore
K*(F) = inf, K(v, F) satisfies, for all distributions F;, Foand 0 < 6 < 1,
the extended-real number inequality

K*(6F, + (1 — 0)F;) = 0K*(Fy) + (1 — 0)K*(Fy).
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In other words, K* is concave in the extended-real sense. If F is construed
as a mixture of distributions F, under some distribution of «, then by the
concavity of K*, the expectation of K*(F,) under a is a lower bound
on K*(F).

In Theorem 3, « is the Gaussian random variable £ and F, is the two-
point symmetrie distribution supported on =4=£.

8. Physical situations leading to nonclassical information patterns. (a)
Nonclassical patterns arise when the controller memory is limited. In
particular, one may want to determine an optimal zero-memory con-
troller, that is, one for which each control action depends only upon the
most recent output [3].

(b) Whenever the physical system to be controlled is of large size or com-
prises mobile subsystems, nonclassical patterns appear. Indeed control is
then effected from several stations widely separated and in relative motion.
Hence the actions applied at a given time-stage by the stations are not
based all on the same data, even when each station has perfect memory.
Communieation links between stations are subject to delay, noise and
operating costs. These links should be considered as part of the controlled
system and the communication policy as part of the control policy. The
nonclassical effects are most likely to be of practical import in such cases,
as for control of space missions, air traffic or high-speed ground trans-
portation.

(c) When communications problems are considered as control problems
(which they are), the information pattern is never classical since at least
two stations, not having access to the same data, are always involved.

If one considers the transmission of Gaussian signals over Gaussian
channels with quadratic (power and distortion) eriteria, then there is a
possibility, in complex cases such as with noisy feedback channels, ete., that
the optimum “controller’” (i.e., modulator or coder) not be affine.

9. Conclusions. (i) Further study of linear, Gaussian, quadratic control
problems with general information patterns appears to be required.

(i1) The existence of an optimum and the question of completeness of
the class of affine designs must be examined as a function of the informa-
tion pattern.

(iii) It would be interesting if a relation could be found between the
appearance of several local minima over the affine class and lack of com-
pleteness of this class.

(iv) Algorithms for approaching an optimal solution need to be de-
veloped. Because of the occurrence of local minima, this appears to be a
most difficult task.
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