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A COUNTEREXAMPLE IN STOCHASTIC OPTIMUM
CONTROL*

H. S. WITSENHAUSEN
Abstract. It is sometimes conjectured that nothing is to be gained by using non-

linear controllers when the objective is to minimize the expectation of a quadratic
criterion for a linear system subject to Gaussian noise and with unconstrained control
variables.

In fact, this statement has only been established for the case where all control
variables are generated by a single station which has perfect memory.

Without this qualification the conjecture is false.

1. Introduction. In a stochastic control problem control actions have to
be taken at various instants in time as functions of the data then avail-
able. One seeks the functions for which the expected value of the cost,
under given noise distributions, is minimized. It is usually assumed that
all actions to be taken at a given time are based on the same data and
that any data available at time will still be available at any later time
t’ t. This situation is the classical information pattern.

Considering in particular unconstrained control of linear systems with
Gaussian noise and quadratic criteria, it is well known that the search
for an optimum can safely be confined to the class of affine (linear plus
constant) functions [1]. This is the case for both discrete and continuous
time systems, with classical information pattern.
In this paper it is shown that the class of affine functions is not always

adequate (complete, in decision theory parlance) when the information, pat-
tern is not classical.
A counterexample is presented for which it is established that an optimal

design exists and that no affine design is optimal. There does not appear
to exist any counterexample involving fewer variables than the one pre-
sented here.
The practical importance of nonclassical information patterns is dis-

cussed.

2. Problem description.
Original Statement. Let x0 and v be independent random variables with

finite second moments. Consider the following 2-stage stochastic control
problem. (All variables are real scalars.)

State equations, xl xo zr ul

X2 Xl 2.
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Output equations. yo Xo

y x - v.

Cost function, k’(u) - (x), > O.

Admissible controllers, u " yo

u "(y

where (, ,) is any pair of Borel functions. The set of such pairs is
designated by r.

Objective. For any choice of (’),, ,) the variables u and x become
random variables, and since the cost function is nonnegative it has an
expectation that is possibly infinite. The problem is to minimize over
the expression E{ k(u) W (x)}. The information pattern is nonclassical
because the value of y0 is known at the first control stage but not at the
second.

It will be shown that for x0 and v Gaussian and suitable parameter
values the best affine controller is not optimal over

Restatement. Denoting x0 by x, , by g and letting f be defined by
f(x) x (x), the problem amounts to minimizing, over the set F of
M1 pirs of Borel functions (f, g), the expression

(1) J(f, g) E{k(x f(x)) + (f(x) g(f(x) + v))},
where/c > O. Without loss of generality one my assume

(2) E{x} E{v} 0, E{v} 1.

This reduction amounts to ordinate shifts of f and g, abscissa shift of
g and rescaling. The case E{ v} 0 is trivial. Problem r(]c, F) is the prob-
lem of minimizing (1) with v Gaussiau subject to (2) and x having the
distribution function F subject to (2) and 0 < E{x} =- < . Problem
v(k, a) is the special case of problem v(/, F) with F the Gaussian dis-
tribution with zero mean and variance

3. Existence of an optimum for problem v(]c, F).
LEMMA 1. (a) J* inf {J(f, g)I(f, g) F} satisfies 0 <= J*

_<_ min (1, k).
(b) If (f, g) F, then there exists (f, g) F such that EIf(x)l O,

Ei(x f(x))l <= z, J(f, g) <= J(f, g) and E{ff(x)} <= 4J.
Proof. () Forf- O,g 0 one hasJ(f, g) kElx} k, while

for f(x) x, g(y) - y one has J(f, g) =EIv} 1.
(b) If E{ (x f(x) )l > J so that J(f, g) >=

then f g 0 satisfies ll requirements. If El(x f(x))1 <= a, then
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E[f2(x)} =< 4a2, so that m E[f(x)} exists. Let fl(x) =--- f(x) m, gl(y)
g(y + m) m. Then E{f(x)} O, E{(x f(x)) 2} E[(x f(x))}
m -<_ a, hence E{f2(x)} <= 4a and J(f, gl) J(f, g) k2m <= J(f, g).
Hence one need only consider pairs (f, g) for which f(x) has zero mean

and variance not exceeding 4a2. For suchf we now select g gf* to minimize
J(f, g) for fixed f.
With (x) (2re)-1/2 define

Ds(y) f (Y f(x) dF(x),

NI(y) J f(x)(y f(x) dF(x),

gs (y) N(y)/Ds(y),

Je* (f) J(f, gs*).
First we recall a well-knowu fct.
LEMMA 2. Let be a measure and h a measurable function. Consider the

integral

H(s) (s t)h(t) dt(t).

Then the set of real values of s for which the integral is finite is convex and H
is analytic on the interior of this set.

Proof. Since (s t) %/’q(s)e’t(t), one can interpret H as

II() ,/2-() e’()h() d(t).

The claim then follows from the properties of convergence strips of two-
sided Laplace transforms.
LEMMA 3. Assume E{f2(x)} < . Then
) Nf Ds g* are analytic with D] > 0;
b D is a density of the random variable y f( x - v;

(c) g*(y) Elf(x) Y} a.s.;
(d) g*(f) miu J(f, g) g Bore1}
(e) dgs*(y)/dy vat {f(x) lY} >- 0;
(f) g*(f) 2E (x f(x) )2 Eivar If(x)

Elf2(x)} Etg*(y)}
1 I(D]),

where

)2 dyI(Df f Dz(y)
D](y)
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dD(y)
dlog D](y)

dy

is the Fisher information of the random variable y;
(g) max(0, 1 E/fi(x)}) <- I(D) <= 1, andforE{(x f(x)) :} __<

one has J.2*(f) k2a2 -[- min (1, 4).
Proof. (a) For each y the integrands q(y z) and zq(y z), with

z f(x), are bounded, hence the integrals defining N] and D] exist for
all y. By Lemm 2, Nf and Df are nlytic. Since o is strictly positive, so
is D, hence g* is analytic.

(b) The joint distribution of y and x is defined by

(y f(x) dy dF(x)

(vx)because the measurable transformation - with y f(x) + v

is measure preserving by Cavalieri’s principle (though a Jacobian does not
exist for general f). Hence the marginal distribution of y hs density D].

(c) Since f(x) has finite second moment, its conditional expectation
exists. With the joint distribution of x and v as in (b), (c) is immediate.

(d) This states the quadratic minimization property of expectations.
(e) and (f). These follow by simple manipulations. Note that

dN.(y) yD,(y) -{- _-7- D(y);
ay

, d
g] (y) y - - log D](y).

(g) This follows as in Lemma 1.
The problem is thus reduced to the minimization of

J.*(f) tEi(x -f(x))l I(D:) -F 1

over ll Borel functions (or only those of zero mean and variance =< 4a).
The designer is trying to find compromise between (i) keeping the

cost of the first stage correction small, and (iX) making the Fisher informa-
tion of the observation available at the second stage large.
The difficulty is that J.* is not convex functional.
Now for f0 and g0 as in Lemma 3 we attempt to minimize J(f, g’0)

over f for fixed g:*o.
LEMM: 4. Let P be the distribution of a real random variable. Let a be

the set of all points x for which both (- , x] and Ix, - have positive
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probability. Let a2 be the set obtained by removing from the convex hull of the
support of P those boundary points which are not atoms. Let as be the inter-
section of all convex sets of probability one. Then a a2 a(P),
the smallest convex set of probability one.

Proof. (i) al a2" If x belongs to the interior of a2, both Ix, and
(- , x] have positive probability. If x is a boundary point of a2, then
it is an atom, hence belongs to

(ii) a2 :::) a’By construction a. is a convex set of probability one.
(iii) a D a_" If E is a convex set nd x a point in a but not in E,

then E is disjoint from one of the sets (- , x], [x, + ), and thus E has
probability less than one. Hence all convex sets of probability one con-
tain
Note that in two (or more) dimensions the intersection of all convex

sets of probability one may have probability zero, because the boundary
of a nontrivial convex set is uncountable.
IEMMA 5. Forf and g]* as in Lemma 3 let P be the distribution of the random

variable f(x). Then the range of g]* is contained in a(P).
Proof. By contradiction suppose that for some y the set [g(y),

(or (- , g(y)]) has probability zero under P. Then

g(y)D](y) Ns(y) f dF(x)f(x)(y f(x))

f dP(z)z(y z)

f dP(z)z(y z)
,(u))

< g(y) dP(z)(y- z), -,g())

g(y)ns(y),
which is a contradiction.
LEMMA 6. For fo and go as in Lemma 3, fixed, one has

J(f, go) f dF(x)[I[(x f(x) )2 . K(f(x) )],

where K is a nonnegative analytic function.
Proof. To shorten notation let g g]*0 and let P be the distribution of

the random variable f0(x). One has

f dF(x)[k2(x f(x))2
_

K(f(x))]
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with

K(z) J dv(v)(z g(z + v) )

f dy,(y- z)(z- g(y)).

Since the integraads are nonnegtive, the above formulas are valid whether
the itegrals are finite or not. Let be the set {zlK(z) < }. Because of
the inequalities

g(y) <- 2z + 2(z- g(y)),.

(z g(y)) <= 2z -t- 2g(Y),

the set f coincides with the set of all z for which

f dy,(y < .z)g2(y)

By Lemm 2 the set fl is thus convex. By construction of g,

J*(f0) J(fo, g) < ,
and therefore,

f dF(x)K(fo(x)) f dP(z)K(z) < .
Hence the set has probability one under P. Since it is con.vex, fl contains
a(P) defined in Lemma 4 and, by Lemma 5, a(P) contains the range of g.
Also by Lemma 3(e) g is monotone non.decreasing.

This author claims that , + ); indeed otherwise by convexity
of at least one of the inequalities - < inf , sup < holds. If
both hold, g is bounded which implies fl (- , + m ). If inf -,
sup < ,then

converges for z < sup by he assumption on and a foriori for z sup .
Bu, for all z,

dy(y- z)g(y) <

because for y > 0, g is bounded, according to Lemms 3(e) nd 5, by

g(O) <= g(y) <= sup .
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Hence/ , -F and a symmetric argument applies for
sup o.

In conclusion, f dyq(y z)g2(y) is finite for all z, and a iortiori

f dy(y z)g(y) z. By 2, integrals areis finite for &ll Lemma both these

analytic in z. Therefore,

z)g2(y)
is analytic.
LEMMA 7. For E{ (fo(x) x) =} =< a and g g**o as in Lemma 3, there

exists a function f*, monotone nondecreasing on a( F), such that
(a) J(f*, g) min {J(f, g)[f Borel},
(b) ]f*(x) < c(x) for x in a(F), where the real-valued function c de-

pends only on F and 1, not on fo.
Proof. For each x the function

V(z) (x z) + K(z)

is nonnegative, continuous (by Lemma 6) and radially unbounded (be-
cause K -> 0). Hence it attains its minimum on a nonempty compact
set. For each x define f*(x) as one of the minimizing values of z (e.g.,
the largest). Then for any x and x,

y(f*(x) <= v(f*(x’)
and

V,(f*( x’) <= Y,(f*( x) ).

Adding these inequalities gives

(x x’)(f*(x) f*(x’)) O.

Hence the function f* is monotone nondecreasing nd fortiori Borel.

v(f*()) <__ v(f(x)

for all x in a(F), which implies

f dF(x) * fVx(f (x) <= dE(x)Y(f(x))

or
J(f*, g) <= J(f, g),

so that f* is optimal for fixed g. In particular, J(f*, g) <= J(fo, g)
J*(fo) <= a - rain (1, 4a), a constn independent of f0.
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Hence E{f*2(x)} <= a, where a is a constant. Then for x a(F),

( a))1/2 ( )))1/2< f$ a
F(( , x]

() <
F([x, +

Indeed, if f*(x) > (a/F([x, --{- )1/2, then

f dF()f*() >= f dF()f*()
x,+)

a f dF() a,> F([x, A- )) .+)

and similarly for the lower bound.
One also needs a special form of Helly’s selection theorem.
LEMMA 8. Let S be a convex set of reals and f, a sequence of nonotone non-

decreasing functions on S. Assume that, for all n and all x in S, [f(x)
<__ c(x) < . Then there exists a subsequence which converges pointwise
on S to a monotone nondecreasing function f.

Proof. Because at each x in S the numerical sequence f(x) is bounded,
there exists a subsequence converging at that value of x. Given a countable
subset of S a subsequence converging on it can be formed by the diagonal
process. Let So be the set of rational points in S. It is countable, hence we
may assume that f= is a subsequence converging on So, reindexed. Then
lira sup f(x) is a monotone nondecreasing function to which, by monotony,
the sequence f. converges at all points of continuity interior to S. Since the
points of discontinuity of a monotone function are countable and the
number of boundary points of S belonging to S is at most two, a second
application of the diagonal process yields a subsequence converging on S.
THEOREM 1. For any > 0 and any distribution F the problem r(k, F)

has an optimal solution.
Proof. Let (f.(0), g(0)) be a minimizing sequence in F, that is,

lira J(f(), g(0) j. inf J(f, g) fig Borel}.

Observe that J(f, g) depends only upon f through its restriction to a(F).
Henceforth we shall only consider functions f so restricted. Observe also
that when the construction of Lemma l(b) is applied to a pair (f, g),
wheref is monotone on a(F), the resulting functionf is monotone on a(F).
For each value of n replace (f(0), g(0)) by (f(i), g()) according to

Lemma l(b). Then replace by (f=(i), g(2) with g() g*() according to
Lemma 3. Then replace by (f(2), g()), where f.() is optimal versus g(2)
and monotone as by Lemma 7. Then replace by (f=, g(a)) according to
Lemma l(b) noting that fi, is still monotone. Then replace by (f, g),
where g g* according to Lemma 3.
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Then

J(f,, g) * g()J. (f) <= J(fn, <= j(f(2)

=< j(A(1) gn(2)) < j(f(1), gn(i)) < j(f(0) g(0))
and therefore the sequence (fn, gn) is , fortiori a minimizing sequence,
that is,

lira * ,/*.J2 (fn)

By Lemmas 7 and 8 there exists a subsequence fk converging to a limit
f pointwise on a(F). Relabel (fnk, gnk) aS (f, gn). By Fatou’s lemma,

E{fe(x)} <- lira inf E{fn2(x)} 4a2.
Let g g]* NffD]. For each y the functions q(y z) and z(y z)
are bounded functions of z, and since is continuous,

(y f(x) -- (y f(x) ),

f(x)(y f(x) -- f(x)(y f(x) ),

pointwise in x, for all y.
By the bounded convergence theorem,

D(y)

for each y, and similarly,

dF(x)(y A(x) --> D(y) :> 0

N.,,(y) -- N(y).Hence g(y) -- g(y) pointwise.
For all x in a(F) and all y the nonnegative expression

A,,(x, y) [/c(x fi(x) )2 + (f,.,(x) g,,(y) )2l(y f,,(x)

converges to

A(x, y) [k2(x f(x) )2 -t- (f(x) g(y) )](y f(x) ).

By Fatou’s lemma,

f, dF(x) f dyA(x, y)<= lim inf f.() n-o ()

or

dF(x) f dyAn(x, y)

J(f, g) <= lim inf J(f, g,) J*.

But, by definition, J* <= J(f, g), hence J*
is optimal. (Define f as zero outside a(F).)

J(f, g) and the pair (f, g)
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Note that when a(F) hs (sy upper) boundary point b not belong-
ing to a(F) (because b is ot an tom), then the function c(x) of Lemm 7
pproches s x -+ b nd, in consequence, the function f of Theorem 1
my pproch s x -+ b. Then monotone rel-vlued extension of f
to (- , does not exist.
Tking the first writion of J2* gives, formally,

f dF(x)G(x)f(x),J*(f

where

G(x) 2/:(f(x) x)

f D/(y) I2(y f(x)) D/(y)(y-f(x))-2J+ dyg(y f(x)) :D](y) " D](y)

with
d D](y) N(y) yD,(y)D:’ (y)

Hence one has the following necessary condition.
LEMM 9. Iff is optimal, then E{f(x) O, E{f(x) <-_ 4a, and G/(x) 0

F-almost surely, provided the formal differentiation holds at least in the sense

of Gdteaux for f in L[(- , ), F].
This condition is of little use because there are iu general mny local

minimu of J*(f). Steepest descent iu function space caa be used to im-
prove a suboptimal solution but not, safely, to find an absolute optimum.
An alternative existence proof cn be bsed on generalization of

Theorem 378 of Hrdy, Littlewood and P61y [2]. All functions f which
give the sume distribution to f(x) lso give the same optimul cost i I(D)
for the second stage. According to the theorem in question, among ull
these "equimeasurable" functions, the monotone nondecreasing rearrange-
ment mximizes E{xf(x)l, hence minimizes E{(f(x) x)l. This es-
tublishes the existence of a minimizing sequence (f, g]*) with monotonef.

4. Optimization of v(/, ) over the affme class. For problem 7r(/c, )
let

ga* inf {J(f, g)[f, g affine}.

Observe that the transformation of (f, g) into (f, g) in Lemma l(b)
mps the class of a/fine pairs into itself. Hence one need only consider
E{f(x)} 0 or
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For such f,

with

2(T2j,(f) -,,J2a(k) ]C2(r2(1 X) -4- 1 + k2z

This expression being nonnegative, analytic and radially unbounded, op-
timal values of h exist and are stationary pois of J.
LMM 11. Optimal ane solutions exist and are of the form f(

g( y gy, where

and aX is a real root of the equation

1(- )( + t) += o.

rooL Set dJ:( x / o.
A great deal of insight is gained by in.terpreing graphically the con-

diion of Lemma 11. It may be written

k(_ ).
(1 + t)

Hence the sationary points are the abscissas of the points of intersection
of the curve

8
(1 + t)

with the line

s (- t).

The curve is odd and positive for > 0. Since and ]c are positive, all
solutions are positive. The curve has a maximum at %//3 with value
3%/g/16 and then decays asymptotically to zero with an inflection at

1, where the value is -} and the slope -}.
Hence for k >_- -I and any there is exactly one root which defines a

unique optimum.
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For ] < - and a sufficiently small there is a unique solution with
small. For a sufficiently large there is a unique solution with large. For
intermediate values of there are 3 solutions corresponding to two local
minima of J2* separated by a local maximum. There is a value ac of for
which the two local minima are equal, hence both optimal. For
the lowest root is optimal; for > the largest root is optimal. Hence
for fixed 1 < the plot of the optimal versus has jump at , though
Ja* is continuous in . At, and only at, the jump there are two optimal
solutions.
LEMMA 12. For l < the critical value of is At this value the

two optimal solutions are h (1 4/c), both of which yield
J* 1

Proof. Let k 1, ]c . Then the sttionarity condition is
(t a)(1 + t) + at 0 and can be factored into

(t -t + )(t + t-) o.
Since the two roots (
to J, they are the two local minima, and the real root of the cubic is the
intermediute locul maximum. Hence kz 1 is the critical condition.
Note that fork 1, k , there is a triple root at the inflection point,

and for k 1, k > , the only rel root is that of the cubic and this is
then the optimum.
LEM 13. If a design is optimal in the ane class, it is optimal in the

class of all pairs of Borel functions (f, g) of which at least one is ane.
Proof. If either f or g is affine and fixed, the determination of an optimal

choice for the other function is a Gaussiau-liaear-quadratic single-stage
problem with classical information pttern, hence it is aa affine ruction.

Clearly this lemma holds in far more general problems with "t least one"
replaced by "ull but ut most one."
LEM 14. If f(x) hX and g(y) z:h:y/(1 + ) is stationary (in

particular, optimal) over the ane class, then it satisfies the formal condi-
tions of Lemma 9.
Pro@ With f(x) hx, substitution yields

G](x) 2 (h- 1) + (1 + Xa) x,

which wnishes by the stationarity condition of Lemma 11.
Despite the facts stated in Lemmas 13 and 14, we shall find that J* J*

is possible.

5. Two-point symmetric distributions. Consider problem (k, F) for
F the two-point symmetric distribution assigning probability to x a > 0
and x
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Let a f(). For optimization, we may assume by Lemma l(b) that
f(-z) -a and by Lemma 7 that a >= 0.

The first stage cost is thus k2(a z)2. At the second stage,

Ds(y) 1/2((y a) - (y + a))

/-(a)(y) cosh ay.

Hence,

Ds(y)
y A- a tanh ay

gff(y) a tanh ay,

g*(y) a a seth ay,

EIgs*2(y)} a- h(a),

where

Thus,

h(a) %/ a(a) f (y)
cosh ay

J2*(f) k2El(x f(x))2l + E{f:(x)} Elg

k’(a- r) zc h(a).

This is a radially unbounded analytic function of a, and therefore attains
a minimum J* Vk(z) at one or more optimal values of a. Any optimal
value must satisfy the transcendental equation

k(r a) -1/2h’(a).
A plot of 1/2h’() is similar in shape to the plot of t/( 1 - t) which occurred
in the optimization of the Gaussian case over the affine class. Hence the
qualitative discussion of that case applies also in the present instance. The
possible appearance of two local minima has now a simple interpretation.
For small k and appropriate one policy is to bring a close to zero by
means of f so that the second stage will have little work to do; another
policy is to make a larger than , creating a vast gap between a and -a,
so that the second stage can almost infallibly separate these two values.
In summary one has the following lemma.
LEMMA 15. When F is the two-point symmetric distribution with variance

r then the design f(x) (a/z)x, g(y) a tanh ay is optimal foran appro-
priate constant a which gives the minimum in the formula

J* Vk() - min [k?(a --) zc h(a)].
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Note that the functions h(a), h’(a) and V(z) can be obtained by com-
puter programs with relative ese. Note also that, for the general problem
r(lc2, F), whenever f(x) has a two-point symmetric distribution with the
values =t=a, then the minimum over g of E{ (f(x) g(f(x) + v) )} is h(a).
When a >> 1 (the vrince of the noise v), the second stage cost should

be close to zero. More precisely one has the following lemma.
LEMMA 16. The function h(a) is bounded by %//- a9(a) ae-a/’.
Proof.

(Y) dy f(y)dy 1.
cosh ay

6. llonlinear design for the Gaussiart case.
THEOREM 2. There exist values of the parameters tc and r for problem

7r(tc, r) such that J*, the optimal cost, is less than J,*, the optimal cost
achievable in the class of a2ne designs.

Proof. Consider the design

f(x) sgnx, g(y) tnhy.

For this choice f(x) has two-point symmetric distributi.on and g g*.
The.

J(f, g) lcZ{ (x r sgn x)} q- h(z),

where h is the function defined in 5.
The first term is readily ewluted to be

For lc 1, by Lemm 16,

<= 2 +

As k -- 0, the right-hand side pproches 2( 1 W//r) 0.404230878,
while by Lemm 12, Ja* pproches 1.

Hence, for smll k, J* <= J(f, g) < J,*.
The design of Theorem 2 is fr from optimal. Lower wlues of J(f, g*)

for k 1, k small, re obtained by starting with f (2n q- 1)-level
quuntiztion nd then improving this choice by the gradient method in
functioa spce.
The optimum, which exists by Theorem 1, is not known.
Computer experimentation suggests that the functional J* hs lrge

(possibly infinite) number of stationry points.
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7. A lower bound for the Gaussian case. Since only suboptimal designs
for the Gussian case were found in 6 and these give only upper bounds on
J*, it may be useful to have loose but positive lower bound on J*.

Let , u, v be independent random variables" , v Gussiun of zero mea
and variances a, 1; u taking the values -t-1 and -1 with probability 1/2.

Let Ja* be the infimum, over ll pairs (f, g) of Borel functions of two
variables, of the expression

J(f, g) E{k2(u f(u, ))2 + (f(u, ) g(f(u, ) + v,))2}.
Let x u and y f(u, ) + v; then x is a Gaussian random variable
independent of v and distributed like (.
Hence for any pair (f, gt) of Borel functions of one variable, the choice

f(x, ) f(x), g(y, ) g(y)

is a possible design, for which

Ja(f, g) J(f, g),

where J is the cost functional of problem r(lc, a). Hence Ja* =< J*. But

J(f, g) E{E{expression (}},

and for fixed ( the minimization of the conditional expectation is the prob-
lem of 5 with the variable of that section having the value . Hence for
all pairs (f, g) the conditional expectation is, almost surely in , bounded
from below by the function V(() defined in Lemma 1.5. This establishes
the next theorem.
THEOREM 3. For problem r(lc, a) one has

j*

Since V can be obt.ined by computer, this bound can be evaluated for
any/ and a.

Theorem 3 my be considered u special cse of the following observation.
Suppose the expected cost, in stochastic optimization problem with
nonnegtive cost function, is considered as a function of the design , nd
of the distribution F of some of the noise vribles. Suppose that the con-
ditionul distribution of the other noise vribles, given those described by
F, is fixed, for instunce, because they are independent. Let K(% F) be
this function, with vMues in [0, -[- ]. Then for each % K is linear func-
tion of F on the set on which it is finite and is + elsewhere. Therefore
K*(F) inf K(% F) stisfies, for all distributions F, F nd 0 ( 0 1,
the extended-rel number inequMity

K*(OF -t- (1 O)F) _>- OK*(F) nt- (1 O)K*(F).
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In other words, K* is concave in the extended-real sense. If F is construed
as a mixture of distributions F, under some distribution of a, then by the
concavity of K*, the expectation of K*(F,) under a is a lower bound
on K*(F).
In Theorem 3, a is the Gaussian random variable . and F, is the two-

point symmetric distribution supported on =t=.
8. Physical situations leading to nonclassical information patterns. (a)

Nonclassical patterns arise when the controller memory is limited. In
particular, one may want to determine an optimal zero-memory con-
troller, that is, one for which each control action depends only upon the
most recent output [3].

(b) Whenever the physical system to be controlled is of large size or com-
prises mobile subsystems, nonclassical patterns appear. Indeed control is
then effected from several stations widely separated and in relative motion.
Hence the actions applied at a given time-stage by the stations are not
based all on the same data, even when each station has perfect memory.
Communication links between stations are subject to delay, noise and
operating costs. These links should be considered as part of the controlled
system and the communication policy as part of the control policy. The
nonclassical effects are most likely to be of practical import in such cases,
as for control of space missions, air traffic or high-speed ground trans-
portation.

(c) When communications problems are considered as control problems
(which they are), the information pattern is never classical since at least
two stations, not having access to the same data, are always involved.

If one considers the transmission of Gaussian signals over Gaussian
channels with quadratic (power and distortion) criteria, then there is a
possibility, in complex cases such as with noisy feedback channels, etc., that
the optimum "controller" (i.e., modulator or coder) not be affine.

9. Conclusions. (,i) Further study of linear, Gaussian, quadratic control
problems with general information patterns appears to be required.

(ii) The existence of an optimum and the question of completeness of
the class of affine designs must be examined as a function of the informa-
tion pattern.

(iii) It would be interesting if a relation could be found between the
appearance of several local minima over the affine class and lack of com-
pleteness of this class.

(iv) Algorithms for approaching an optimal solution need to be de-
veloped. Because of the occurrence of local minima, this appears to be a
most difficult task.
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